mnist2.py 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. # -*- coding: utf-8 -*-
  2. """
  3. Created on Thu Sep 8 15:29:48 2016
  4. @author: root
  5. """
  6. import tensorflow as tf
  7. import tensorflow.examples.tutorials.mnist.input_data as input_data
  8. mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 下载并加载mnist数据
  9. x = tf.placeholder(tf.float32, [None, 784]) # 输入的数据占位符
  10. y_actual = tf.placeholder(tf.float32, shape=[None, 10]) # 输入的标签占位符
  11. # 定义一个函数,用于初始化所有的权值 W
  12. def weight_variable(shape):
  13. initial = tf.truncated_normal(shape, stddev=0.1)
  14. return tf.Variable(initial)
  15. # 定义一个函数,用于初始化所有的偏置项 b
  16. def bias_variable(shape):
  17. initial = tf.constant(0.1, shape=shape)
  18. return tf.Variable(initial)
  19. # 定义一个函数,用于构建卷积层
  20. def conv2d(x, W):
  21. return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
  22. # 定义一个函数,用于构建池化层
  23. def max_pool(x):
  24. return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
  25. # 构建网络
  26. x_image = tf.reshape(x, [-1, 28, 28, 1]) # 转换输入数据shape,以便于用于网络中
  27. W_conv1 = weight_variable([5, 5, 1, 32])
  28. b_conv1 = bias_variable([32])
  29. h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # 第一个卷积层
  30. h_pool1 = max_pool(h_conv1) # 第一个池化层
  31. W_conv2 = weight_variable([5, 5, 32, 64])
  32. b_conv2 = bias_variable([64])
  33. h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # 第二个卷积层
  34. h_pool2 = max_pool(h_conv2) # 第二个池化层
  35. W_fc1 = weight_variable([7 * 7 * 64, 1024])
  36. b_fc1 = bias_variable([1024])
  37. h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) # reshape成向量
  38. h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 第一个全连接层
  39. keep_prob = tf.placeholder("float")
  40. h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # dropout层
  41. W_fc2 = weight_variable([1024, 10])
  42. b_fc2 = bias_variable([10])
  43. y_predict = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # softmax层
  44. cross_entropy = -tf.reduce_sum(y_actual * tf.log(y_predict)) # 交叉熵
  45. train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) # 梯度下降法
  46. correct_prediction = tf.equal(tf.argmax(y_predict, 1), tf.argmax(y_actual, 1))
  47. accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 精确度计算
  48. sess = tf.InteractiveSession()
  49. sess.run(tf.initialize_all_variables())
  50. for i in range(20000):
  51. batch = mnist.train.next_batch(50)
  52. if i % 100 == 0: # 训练100次,验证一次
  53. train_acc = accuracy.eval(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 1.0})
  54. print('step', i, 'training accuracy', train_acc)
  55. train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5})
  56. test_acc = accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
  57. print("test accuracy", test_acc)